Widerstandsschweißen

Jeder Punkt sitzt

Eigentlich ist die Widerstandsschweißtechnik einfach: Strom durchfließt zwei Bauteile, die entstehende Hitze verbindet die Werkstücke. Es sind jedoch die hohen Anforderungen an die Wettbewerbsfähigkeit, die den Prozess und die Prozessverantwortlichen stark unter Druck setzen: permanente Zeitknappheit, ehrgeizig gesetzte Produktionskennzahlen, hohe Fertigungsqualität und störungsfreie Produktionsabläufe sind die treibenden Faktoren. Intelligente Lösungen sind daher gefragt.

Im Industrial Application Center von SMC lassen sich unter Realbedingungen die Schweißzangen-Antriebstechnik und damit verbundenen Lösungen erarbeiten. (SMC Pneumatik GmbH)

Im Industrial Application Center von SMC lassen sich unter Realbedingungen die Schweißzangen-Antriebstechnik und damit verbundenen Lösungen erarbeiten. (SMC Pneumatik GmbH)

Das Schweißen mit Hilfe einer Roboterschweißzange zählt heute in der Industrie zum Standard. Eine der großen Herausforderungen in diesem Produktionsprozess liegt darin, die Form der geschweißten Bauteile zu erhalten, trotz der immensen Kräfte, die auf sie einwirken. Gleichzeitig soll der gesamte Produktionszyklus schnell und störungsfrei laufen. Will man beides erreichen, oder verbessern, fällt der Blick auf die Zangenantriebstechnik. Schließlich liegt hier großes Potenzial, die Kosten und die Produktivität zu beeinflussen. Der Zangenantrieb hat heutzutage maßgeblich Einfluss auf:

  • • Investitions- und Betriebskosten der Roboterschweißzange
  • • Reduktion der Nacharbeit
  • • Störungsfreier Prozessablauf durch vorausschauende Instandhaltung
SMC setzt beim Servoantrieb der Roboterschweißzange auf Pneumatik, was verschiedene Vorteile bietet. (Bild: SMC Pneumatik GmbH)

SMC setzt beim Servoantrieb der Roboterschweißzange auf Pneumatik, was verschiedene Vorteile bietet. (Bild: SMC Pneumatik GmbH)

Intelligente Lösungen durch Realbedingungen

SMC Deutschland hat in Egelsbach bei Frankfurt mit dem Industrial Application Center IAC eine Umgebung geschaffen, in dem Fachleute unter Realbedingungen einer Produktion die Schweißzangen-Antriebstechnik und damit verbundenen Lösungen erarbeiten. Neue Ansätze lassen sich sofort praxisnah prüfen und anpassen. Hierdurch entstehen Lösungen, die eine hohe Fertigungsqualität und einen störungsfreien Betrieb gewährleisten. Kunden schätzen diese Möglichkeiten und lassen sich dort entsprechend ausbilden. Weiterhin können sie von der Erfahrung und Kompetenz von SMC profitieren und diese für verkürzte Produktionsanläufe nutzen.

Besondere Technik für den Zangenantrieb

SMC setzt beim Servoantrieb der Roboterschweißzange auf Pneumatik. Dadurch ergeben sich mehrere Vorteile. Zum einen sind es niedrige Zangengewichte am Roboter. Dies wirkt sich unmittelbar in den Betriebskosten des Roboters aus. Zum anderen bewegen sich die Schweißzangen-Elektrodenarme mit hoher Geschwindigkeit. Am Ende heißt das: ein Roboter kann mehr Schweißpunkte in der gleichen Produktionszeit erzeugen. Die Gesamtinvestition sinkt. Darüber hinaus sorgt die 6bar-Technik von SMC für weitere Einsparungen: Die Energieaufnahme ist gering und Investitionen in ein Hochdrucknetz können entfallen. Das ist gut für die Investitions- und die Betriebskosten. Dies gilt auch für die großen X120-Zangen bei hohen Elektrodenkräften. Sie sind ohne Taktzeiteinbußen mit einer 6bar-Druckversorgung zu realisieren.

Jeder Punkt sitzt
SMC Pneumatik GmbH


Das könnte Sie auch interessieren

Japanisches Hotel setzt auf Roboterpersonal

Ein japanisches Hotel wartet seit knapp zwei Jahren mit Roboterpersonal und vollautomatischem Check-in auf. Dabei spielen vor allem Überlegungen wie ein niedriger Zimmerpreis und reduzierte Lohnkosten eine Rolle. Doch auch für einen angenehmen Aufenthalt geben die vollautomatischen Mitarbeiter alles.

Anzeige
Linearachsen für die Spritzgusstechnik

Je nach Einsatzfall können Standardroboter zur Entnahme von Spritzgussteilen durchaus teurer und weniger flexibel sein als Eigenentwicklungen. So ist es auch beim folgenden Beispiel eines Herstellers von Kunststoffteilen, der in der Folge die kartesischen Roboter unter Zuhilfenahme von modernen Linearachsen selbst baut.

Anzeige
Offene Manufacturing-Operations-Plattform für die Maschinenkommunikation

Industrie 4.0, automatisierte Produktion, künstliche Intelligenz, selbstlernende Maschinen, Cloud Computing: Schlagworte, die nicht fehlen dürfen, wenn es um die Perspektiven der industriellen Fertigung geht. Einiges davon ist bereits Realität, vieles aber noch Zukunftsmusik. Dabei liegt die Herausforderung weniger in der allgemeinen Verfügbarkeit der erforderlichen Technik als in deren Implementierung.

Mobiler Roboter mit ESD-Konformität

Mit dem MIR200 bringt Mobile Industrial Robots einen autonomen und mobilen Roboter heraus.

Der Roboter und das Werkstück

Das Greifen steht zwischen dem Roboter und dem Werkstück und ist ein essenzieller Vorgang beim Einsatz von Industrierobotern. Dabei ergeben sich je nach Anwendung und Art des Werkstücks verschiedene Ansätze für Greifsysteme sowohl in Bezug auf ihre Wirkung – mechanisch, pneumatisch, magnetisch oder adhäsiv – als auch auf ihre Bauart.

Chips und Module für Robotiklösungen

Roboter sind heutzutage in der Lage, auf Berührungen zu reagieren, mit ihrer Umgebung zu kommunizieren und innerhalb kürzester Zeit komplexe Produktionsabläufe zu erlernen. Um diese Aufgaben zu erledigen, benötigen sie ein leistungsfähiges peripheres Nervensystem, bestehend aus eingebetteten Steuerungschips und -modulen. Robotikhersteller profitieren hierbei von flexiblen Baukastensystemen, bestehend aus Chips und Modulen für verschiedene Anforderungen.