Forschungsprojekt entwirft mobilen Reinigungsroboter

Forschungsprojekt entwirft mobilen Reinigungsroboter

Es saugt und wischt der Roboter

Im Forschungsprojekt ‚Baker‘ ist der Prototyp eines mobilen Reinigungsroboters entstanden, der durch seine modulare Bauweise verschiedene Aufgaben erledigen kann. Neben einem Nassreinigungs- und einem Staubsaugermodul wurde auch ein Roboterarm entwickelt, der Papierkörbe selbstständig leeren kann. So soll menschliches Reinigungspersonal zukünftig entlastet und unterstützt werden.

26. Oktober 2018 Leipzig, Uni-Klinik Leipzig, Deutschland, [Foto: KAY HERSCHELMANN Telefon:+49 (0)30-2927537 Mobil: +49 (0)171 26 73 495 email: Kay.Herschelmann@t-online.de] (Bild: Fraunhofer-Institut f. Arbeitswirtschaft)

Der Reinigungsroboter mit Nassreinigungsmodul beim Praxistest in einem Krankenhaus (Bild: Dussmann Group/Fotograf: Kay Herschelmann)


Ziel des Projekts ‚Baker‘ (Baukastensystem für kosteneffiziente, modulare Reinigungsroboter) war es, einen Serviceroboter zu entwickeln, der einfach an unterschiedliche Reinigungsaufgaben anpassbar ist. Damit kann er das Reinigungspersonal entlasten und bei seiner Arbeit unterstützen – idealerweise die ganze Nacht hindurch. Diese Unterstützung ist hinsichtlich der Herausforderungen der Branche wie dem steigenden Kostendruck, Personalmangel und der Personalfluktuation entscheidend. Zudem eignet sich ein Reinigungsroboter besonders für sensible Bereiche, in denen sonst nur vertrauenswürdiges Personal reinigen könnte. Im Projekt sind eine autonom navigierende mobile Roboterplattform, Module für die Nassreinigung und das Staubsaugen sowie ein flexibel einsetzbarer Roboterarm entstanden. Je nach Ort und Reinigungsvorgang kann der Roboter das passende Modul selbst auswählen und aufnehmen.

Der Reinigungsroboter mit dem Modul zum Staubsaugen bei der Erprobung in den Büroräumen der Dussmann-Hauptverwaltung in Berlin (Bild: Fraunhofer IPA)

Detaillierte Reinigungsplanung

Seine Arbeit plant der Roboter auf Basis der vorliegenden Objektinformationen wie dem Raumbuch, das grundlegende Informationen zu den einzelnen Räumen beinhaltet, sowie dem Revierplan, der die dort zu erbringenden Leistungen definiert. Mit diesen Informationen kann der Roboter die zu reinigende Fläche automatisch in einzelne Räume segmentieren. Darauf aufbauend errechnet er eine optimale Reinigungsreihenfolge und generiert systematische Fahrmuster für die Inspektion oder flächige Reinigung in den Räumen. Hierbei wird auch berücksichtigt, wo gesaugt und wo nass gewischt werden muss. Nachdem die Reinigung beendet ist, erhält der Anwender ein digitales Reinigungsprotokoll, das alle ausgeführten Tätigkeiten dokumentiert und so für Transparenz sorgt.

Variable Reinigungsfunktionen

Bei den entwickelten Reinigungsmodulen war es wichtig, dass der Roboter diese automatisch wechseln kann und zukünftig weitere Module ergänzt werden können. „Mögliche Anwender müssen den Roboter bestmöglich auslasten können. Denn das ist für einen wirtschaftlichen Einsatz essenziell“, erklärt Dr. Birgit Graf, Leiterin des Baker-Projekts und Gruppenleiterin am Fraunhofer IPA.

Der Roboterarm kann Papierkörbe selbstständig erkennen, greifen und den Inhalt in einen Sammelbehälter entleeren. (Bild: ©Rainer Bez/Fraunhofer IPA)

Der Roboterarm kann Papierkörbe selbstständig erkennen, greifen und den Inhalt in einen Sammelbehälter entleeren. (Bild: ©Rainer Bez/Fraunhofer IPA)

Renigungsroboter in der Anwendung

Das entwickelte Modul fürs Nasswischen nutzt einen modifizierten Nassschrubbautomaten, der zusammen mit den Wassertanks kompakt verbaut ist. Diese Variante des Roboters testeten die Projektpartner Ende 2018 in einem Krankenhaus. Im Rahmen der Tests spielten mehrere Mitarbeiter des Projektpartners und FM-Dienstleisters Dussmann Service einen kompletten Einsatzablauf mit dem Roboter durch und bewerteten Bedienung und Performance. Das erste Feedback aus den Befragungen war zufriedenstellend: Die Wasserver- und -entsorgung ist ergonomisch gestaltet, die Reinigung des Geräts einfach. Identifizierte Verbesserungspotenziale, die bei der Überarbeitung des Moduls berücksichtigt wurden, betrafen u.a. die Lautstärke des Roboters. Zudem passten die Projektpartner den Anpressdruck des Reinigungsmoduls und die damit verbundene Reinigungsqualität sowie die Fahrstrategie des Roboters an. Um die Reinigungsergebnisse zu prüfen, entwickelten sie zudem eine Softwarekomponente, die Schlierenbildung erkennen kann. Das Modul für die Trockenreinigung basiert auf einem handelsüblichen Akkustaubsauger, der für die Integration in den Roboter angepasst wurde. Mithilfe einer speziellen Aktorik kann der Bürstenkopf des Saugers vor, zurück und seitlich bewegt werden. So werden auch schwer zugängliche Bereiche wie Bodenflächen unter Tischen gut erreichbar. Dabei findet im Gegensatz zur Nassreinigung keine Komplettreinigung der abzudeckenden Fläche statt. Stattdessen ist der Roboter entsprechend der immer öfter geforderten ergebnisorientierten Reinigung in der Lage, mit einer Software Verschmutzungen automatisch zu erkennen, gezielt dorthin zu fahren und diese zu entfernen. Dabei kann die Software zwischen Schmutz und typischen Büroobjekten wie Stiften oder Scheren unterscheiden. Letztere rührt der Roboter nicht an. Der mit dem Saugmodul ausgestattete Reinigungsroboter wurde Mitte 2019 in der Hauptverwaltung von Dussmann Service in Berlin getestet. Auch hier brachten die Mitarbeiter dem Roboter großes Interesse entgegen und bewerteten das zugrundeliegende Konzept als sinnvoll und nützlich.

Roboterarm hat Türen und Papierkörbe im Griff

Neben der Bodenreinigung beinhaltet die Büroreinigung weitere Handhabungsaufgaben, die für eine menschliche Reinigungskraft kein Problem sind, für Roboter aber eine Hürde darstellen. Menschen öffnen selbstverständlich eine Bürotür, verrücken einen Stuhl, um mit dem Staubsauger unter den Tisch zu kommen, oder nehmen einen Papierkorb in die Hand, um ihn zu leeren. „Diese Fähigkeiten wollten wir auf den Roboter übertragen und so seine Einsatzmöglichkeiten weiter vergrößern“, ergänzt Graf. Das dritte im Projekt entwickelte Modul ist deshalb ein Roboterarm mit einem speziellen Greifer. Eine Objekterkennungssoftware zeigt dem Roboter an, wo sich die zu greifenden Objekte befinden. Eine Software für die mobile Manipulation plant die Bewegung und den Griff des Roboterarms, um die gewünschte Handhabungsaufgabe ausführen zu können. Der Reinigungsroboter ist das Ergebnis einer dreieinhalbjährigen Zusammenarbeit von Forschungs-, Anwendungs- und Technologiepartnern. Die Firmen Kenter, Metralabs und Amtec bauten den Roboter auf. Das Fraunhofer IPA entwickelte die zugrundeliegenden Softwarekomponenten für die Segmentierung und Flächenabdeckung der Einsatzumgebung, für die Objekt-, Schmutz- und Schlierenerkennung und für die mobile Manipulation. Dussmann Service als erfahrener Reinigungsdienstleister definierte die Anforderungen aus der Praxissicht und evaluierte die Reinigungsmodule.

Fraunhofer-Institut f. Arbeitswirtschaft
www.ipa.fraunhofer.de/reinigungsrobotik

Das könnte Sie auch Interessieren

Bild: Robotextile GmbH
Bild: Robotextile GmbH
Automatisierung von biegeschlaffen Werkstücken

Automatisierung von biegeschlaffen Werkstücken

Bei der Handhabung biegeschlaffer Werkstücke treten am Produkt Verformungen auf, die die Automatisierung seit Jahrzehnten vor ein Problem stellen. Eine weitere Herausforderung, die das prozesssichere Greifen von Stoffen bisher nahezu unmöglich macht, ist das Vereinzeln von Stofflagen voneinander. So findet die Maschinenbestückung und -entnahme in der Textilindustrie meist manuell durch eine Person statt. Diese nicht wertschöpfenden Tätigkeiten und Blindprozesse können nun durch die Greiferlösungen von Robotextile automatisiert werden.

Bild: ABB AG
Bild: ABB AG
Depalettierzelle mit AMR

Depalettierzelle mit AMR

ABB hat auf der diesjährigen Logimat die neueste Generation KI-gestützter Robotiklösungen gezeigt, darunter den autonomen mobilen Roboter Flexley Tug T702, den ersten einer ganzen Reihe von mobilen ABB-Robotern mit Visual-SLAM-Navigation.