Wie wirken sich Robotik und IoT (schon heute) in der Produktion aus?

Inline-Messtechnik für mehr Wertschöpfung

Ein 5G-Netzwerk ermöglicht innerhalb der Produktion eine nahezu latenzfreie Vernetzung von Produktionseinheiten und erlaubt Messrobotern eine mit dem Förderband synchronisierte Vermessung von Produkten in der Bewegung. Die hierbei angewandte Inline-Messtechnik sorgt dafür, dass Prozesse in Echtzeit komplexe Merkmale und den Produktionshochlauf bereits ab dem ersten produzierten Teil überwachen können. Die Inline-Messtechnik dient der Erfassung von Messdaten innerhalb einer Fertigungslinie, um diese im Nachgang und mit dem Ziel der Qualitätssicherung zur Prozesssteuerung und zur Qualitätssicherung zu nutzen. Mithilfe von 3D-Sensoren, Kameras und Referenzpunkten erkennen die hier eingesetzten Messroboter z.B. Löcher oder Kanten in der Karosserie und dienen somit der Positionsbeobachtung und -berechnung. Der gewonnene Output bündelt verlässliche und aussagekräftige Mess- und Prüfdaten in der gewünschten Genauigkeit.

Neue Skills für Roboter

Nicht nur die Logistik, die Fertigung und RaaS sind relevante Bereiche oder Möglichkeiten für Robotikanwendungen. Auch die Gaming-Industrie dient als Ideengrube für die Weiterentwicklung der digitalen Kollegen des Menschen. Das mittlerweile in der Spielindustrie nahezu perfektionierte videotechnische Erfassen von Gestik und Mimik kann, bei Anwendung in der Produktion, dazu führen, dass komplexe Handlungsabläufe wie z.B. die Montage von Komponenten gelernt werden. Das in der Industrie angewandte KI-System lernt Handhabungs-Skills durch die reine Beobachtung des Monteurs. Diese Skills können anschließend ungelernten Werkern im Rahmen einer schrittweisen Einführung angeboten werden. Dieser beschriebene Ansatz findet sich schon heute in der Wartung von Anlagen mittels Augmented Reality wieder. Für die kommende Entwicklung ist zu erwarten, dass die vom Avatar im Spielprozess übernommenen Bewegungsabläufe auf das mathematische Modell eines Roboters übertragen werden. Auf diese Weise lassen sich Kosten einsparen, da die Programmierung eines Roboters entfällt. Der Werker bekommt hierdurch die Möglichkeit, dem Roboter quasi spielerisch Fähigkeiten zu vermitteln und ihn somit für Aufgaben zu programmieren. Dieser zeigt seinem digitalen Kollegen mithilfe seiner Gestiken, wie er bestimmte Aufgaben innerhalb der Produktion durchführt. Aber auch die Sprache und die Haptik werden hier eine Rolle spielen: Innerhalb der sprachlichen und haptischen Interaktion kann der Werker dem Roboter entweder durch Kommandos oder durch die manuelle Führung seiner Gelenke bestimmte Richtungen vorgeben. Dabei werden die Gelenkkoordinaten dynamisch aufgezeichnet. Wiederholt der Werker diese Bewegungsabläufe einige Male, kann das KI-System die erlernten Skills und die dazu notwendigen Bewegungsabläufe auf das Robotermodell übertragen.

Seiten: 1 2Auf einer Seite lesen

www.huawei.com

Das könnte Sie auch Interessieren

Bild: Robotextile GmbH
Bild: Robotextile GmbH
Automatisierung von biegeschlaffen Werkstücken

Automatisierung von biegeschlaffen Werkstücken

Bei der Handhabung biegeschlaffer Werkstücke treten am Produkt Verformungen auf, die die Automatisierung seit Jahrzehnten vor ein Problem stellen. Eine weitere Herausforderung, die das prozesssichere Greifen von Stoffen bisher nahezu unmöglich macht, ist das Vereinzeln von Stofflagen voneinander. So findet die Maschinenbestückung und -entnahme in der Textilindustrie meist manuell durch eine Person statt. Diese nicht wertschöpfenden Tätigkeiten und Blindprozesse können nun durch die Greiferlösungen von Robotextile automatisiert werden.

Bild: ABB AG
Bild: ABB AG
Depalettierzelle mit AMR

Depalettierzelle mit AMR

ABB hat auf der diesjährigen Logimat die neueste Generation KI-gestützter Robotiklösungen gezeigt, darunter den autonomen mobilen Roboter Flexley Tug T702, den ersten einer ganzen Reihe von mobilen ABB-Robotern mit Visual-SLAM-Navigation.