Warenlager 4.0

Warenlager 4.0

Egal in welchem Bereich, sei es E-Commerce oder auch die Intralogistik in der Automobilbranche, überall braucht man am Ende ein einzelnes Objekt und keine ganze Palette. Bisher erfolgt der stückgenaue Zugriff auf einzelne Produkte fast immer durch den Menschen. Der Kommissionier-Roboter Toru soll dies ändern: Der mobile, wahrnehmungsgesteuerte Roboter ermöglicht die genaue Vermessung und Erkennung von Objekten mittels 2D-/3D-Kameras sowie den sicheren Griff auf das einzelne Produkt.
Um sich im neuen Lager zurechtzufinden, erkundet Toru zunächst seine Umwelt mit seinen Sicherheitslasern. Dabei erstellt der mobile Roboter eine elektronische Karte zur eigenen Navigation, die er über WLAN den anderen Robotern zur Verfügung stellt. Mit dieser Karte kann er seinen optimalen Pfad planen. Anschließend ist der Roboter einsatzbereit. Der Kommissionier-Roboter erhält seinen Auftrag vom Warenwirtschaftssystem (WWS) per WLAN und fährt selbstständig zum entsprechenden Lagerplatz. Die Navigation funktioniert vollständig autonom auf der Basis von Laserscannern, wobei eine Kombination von Sicherheitslasern und Time-of-flight (ToF) verwendet wird. Letztere kommen zum Einsatz, wenn der Roboter nah an das Regal heranfährt, um die Abstände genau zu messen. Externe Marker für die Orientierung des Roboters im Raum werden hingegen nicht benötigt.

Ermittelung des Greifpunkts

Dank der drehbaren Hubsäule gelingt es Toru, Objekte in einer Höhe von 10 bis 209cm zu erreichen. Der Roboter kann also sowohl das unterste als auch das oberste Regalfach von gängigen Fachbodenregalen bedienen. Um das Objekt zu identifizieren und den perfekten Greifpunkt zu ermitteln, kommt das neu entwickelte Sheet-of-Light-Verfahren zum Einsatz, das auf Basis eines Kreuzlasers und einer 2D-Kamera funktioniert. Der Kreuzlaser projiziert zwei aufeinander senkrechte Laserlinien auf das zu vermessende Objekt. Die 2D-Kamera nimmt die reflektierten Laserstrahlen auf und vermisst das Objekt anhand der Position der Linien im Kamerabild. Im Vergleich zu 3D-Kamerasystemen werden weniger 3D-Punkte erzeugt und damit eine deutlich geringere Rechenleistung benötigt, was wiederum mit deutlich geringeren Kosten verbunden ist. Das Verfahren ist für quaderförmige Objekte wie Bücher, Schachteln und Schuhkartons geeignet. Im Anschluss erfolgt der stückgenaue Zugriff: Soll z.B. ein Buch aus dem Regal von einem Bücherstapel gegriffen werden, fährt eine Greifschiene über das oberste Buch hinweg, setzt an der Hinterkante des Buches an und zieht es vom Stapel auf die ausgefahrenen Führungsschienen. Der Roboter lagert das Buch in seinem mitfahrenden, herausnehmbaren Kommissionier-Regal mit rutschfesten Regalböden zwischen und kann den Pickvorgang unverzüglich fortsetzen. Auch der beidseitige Pickvorgang in einem Regalgang ist mit der drehbaren Hubsäule möglich. Ist das Regal voll, fährt der Kommissionier-Roboter eigenständig zur Versandstation, um das Regal in einer speziellen Be- und Entladestation abzugeben und sich ein neues Regal aufzuladen.

Einsatz parallel zum Menschen

Grundlage für die Programmierung des Roboters bildet das Software-Framework ROS (Robot Operating System). Im Gegensatz zu klassischen Industrierobotern, die in der Regel einmal programmiert werden und dann in der Lage sind, einen festgelegten Arbeits- bzw. Bewegungsablauf repetitiv durchzuführen, plant der autonome Roboter seine Bewegungen in Echtzeit und kann somit auf eine dynamische Umgebung mit ihren unvorhersehbaren Ereignissen und Fehlern reagieren. Diese Fähigkeit ist vor allem in Hinblick auf die Zusammenarbeit von Roboter und Mensch in einem Warenlager entscheidend. Tritt ein Mensch vor ihn, dann bleibt der Roboter dank seiner Sicherheitslaser automatisch stehen oder weicht ihm aus. Aber auch mit Veränderungen der Lagerstruktur oder des Produktsortiments kann Toru umgehen, indem er neue Produkte erkennt und seine Navigationskarte dem veränderten Lager entsprechend anpasst. Alle Roboter sind zudem mit einem zentralen Rechner verbunden, der wiederum mit dem WWS kommuniziert. Dank Multi-Robot Control können die Roboter effizient in der Gruppe eingesetzt werden. Kommt es beispielsweise zu einer Fehlfunktion bei einem Roboter, sendet der Roboter per WLAN ein Fehlsignal an den zentralen Rechner und das Kontrollsystem kann die Aufgabe einem anderen Roboter übertragen, der diese autonom übernimmt.

Ausblick

Der Name Toru kommt aus dem Japanischen und bedeutet ‚greifen‘. Genau für diese Fähigkeit wird der Roboter fortlaufend optimiert. Neben einer Version für quaderförmige Objekte (Toru Cube) sind weitere Kommissionier-Roboter in Entwicklung. So arbeitet man an einem Roboter für die Materialversorgung von Montage- und Fertigungslinien. Toru Box sortiert gefüllte Ladungsträger (KLT) in das Regal und bringt benötigte Rohmaterialien für die Bearbeitung direkt zur Montagestation. Toru Flex soll hingegen in Zukunft komplexere Objekte wie Drogerieartikel picken. Je nach Beschaffenheit des Objektes kann ein Sauggreifer oder alternativ ein Greifarm mit Roboter-Hand gewählt werden, der einen ´Griff in die Kiste´ ermöglicht. Das Greifsystem kann je nach Anwendungsgebiet gewählt und ausgewechselt werden.

Magazino GmbH
www.magazino.eu

Das könnte Sie auch Interessieren

Bild: ©Fröhlich Max (LVT)/Liebherr-Verzahntechnik GmbH
Bild: ©Fröhlich Max (LVT)/Liebherr-Verzahntechnik GmbH
Vorabsimulation per digitalem Zwilling

Vorabsimulation per digitalem Zwilling

Die virtuelle Inbetriebnahme einer Palettierzelle mit automatischer Beladung einer Wälzschälmaschine per Roboter von Liebherr-Verzahntechnik konnte die Projektdauer bei einem Getriebehersteller signifikant verkürzen. Die Vorabsimulation per digitalem Zwilling sparte bei der realen Inbetriebnahme Zeit und Kosten und sorgte für Planungssicherheit zum Produktionsstart.

Bild: TeDo Verlag GmbH
Bild: TeDo Verlag GmbH
Wenn das FTS mit dem Roboter…

Wenn das FTS mit dem Roboter…

Autonome mobile Roboter und kollaborierende Knickarmroboter sind zwei Evergreens im Robotik-Trendkarussell. Relativ neu ist allerdings die Möglichkeit beide Helferlein zu kombinieren. Der autonome mobile Roboter erweitert den Arbeitsbereich des Cobots oder auch eines größeren Roboters enorm und macht ihn mobil. Das bietet neue Möglichkeiten z.B. bei der Maschinenbe- und entladung, beim Werkstück- und Materialtransport oder in der Qualitätsinspektion.

Bild: Fronius International GmbH
Bild: Fronius International GmbH
Hohe Bauteilvielfalt

Hohe Bauteilvielfalt

Das österreichische Unternehmen Anton Paar fertigt Messgeräte für vielerlei Branchen. Da zunehmender
Fachkräftemangel und permanent steigende Stückzahlen intelligente Produktionslösungen erfordern, investierte das Unternehmen in eine Roboterschweißzelle von Fronius. Mit der Zelle ist es möglich, einen kompletten Schweißauftrag in einem Zug abzuwickeln, auch wenn eine Charge mehrere unterschiedliche Objekte umfasst.

Bild: SMW-electronics GmbH
Bild: SMW-electronics GmbH
Kontaktlose Übertragung von Energie und Signalen durch induktive Koppelsysteme von SMW-Electronics

Kontaktlose Übertragung von Energie und Signalen durch induktive Koppelsysteme von SMW-Electronics

Eine wesentliche Rolle auf dem Weg zur digitalen Fabrik spielt smarte Konnektivität. Zur kontaktlosen Übertragung von Energie und Signalen für die Anbindung von Sensoren und Aktoren hat SMW-Electronics induktive Koppelsysteme entwickelt. In den unterschiedlichen Bauformen können sie nicht nur zusätzlichen Nutzen ausspielen, sondern ermöglichen auch ganz neuartige Anwendungen. Endlos rotierende Robotergreifer sind nur ein Beispiel.