Kommt die Bin-Picking-Revolution?

Software zur automatisierten Bestückung von Maschinen

Kommt die Bin-Picking-Revolution?

In der Produktionslogistik müssen Maschinen in definierter Art und Weise mit Rohmaterialen, Halbfertigteilen und Komponenten für die weitere Verarbeitung bestückt werden. Diese Ausgangsmaterialien befinden sich meist sortenrein, aber zufällig angeordnet in Behältern verschiedener Art. Derzeit bestücken vielerorts kostenintensive Mitarbeiter die Produktionsmaschinen von Hand, 3D-Bildverarbeitung und Robotik bieten hier aber neue Möglichkeiten zur Produktivitäts- und Qualitätssteigerung.

Ein Roboter entnimmt Bauteile gesteuert durch die Moonlower-Software von Euclid Labs. (Bild: Euclid Labs Srl)

Zur Automatisierung des eintönigen und augenscheinlich stets gleichen Arbeitsganges der Bauteilentnahme aus Behältern und der Bestückung von Maschinen sind Roboterarme mit zugehörigen Greifern nötig. Dabei stellen sich allerdings mehrere Herausforderungen:

  • Die teils chaotisch in der Kiste liegenden Teile müssen einzeln als solche erkannt und lokalisiert werden.
  • Der Roboter und sein Greifer benötigen eine geeignete Greifposition für das am günstigsten liegende Teil.
  • Wurde das Teil gegriffen und hochgehoben, muss eine Sensorik erkennen, wie der Greifer das Teil tatsächlich hält. Nur so lassen sich die richtigen Anweisungen an den Roboter für die korrekte Ablage des Objektes an der Zielposition ableiten.

Dieser sogenannte Griff in die Kiste (engl.: Bin-Picking) bedarf also der Technik aus dem Bereich der 3D-Bildverarbeitung – optisch und mathematisch komplex und ebenso rechenaufwendig. Erst seit Kurzem sind dafür notwendige 3D-Sensoren mit ausreichender Auflösung und Geschwindigkeit, PCs mit benötigter Rechenleistung und Algorithmen zur automatischen Lage-Schätzung und Pfadplanung zu attraktiven Preisen auf dem Markt verfügbar.

Technische Hürden

Ein Bin-Picking-System besteht aus einem Roboter, einem Greifer, der Teile in verschiedenen Positionen fasst, einem 3D-Sensor und umfangreicher Software. Diese muss die Teile im 3D-Bild lokalisieren, eine sichere Greifposition erkennen (falls möglich) und den Pfad des Roboterarmes planen, um Kollisionen des Armes und des gegriffenen Bauteils mit anderen Objekten in der Roboterzelle zu vermeiden. Software und 3D-Sensor sind prinzipiell für eine breite Vielfalt von Teilen universell anwendbar. Jede Aufgabe erfordert jedoch die Auswahl des geeigneten Roboters und des individuellen Greifers. Oft ist sogar die Entwicklung eines speziellen Greifers von Nöten, was die universelle Einsetzbarkeit von Bin-Picking-Systemen reduziert. Unterliegt die Lage der zu ergreifenden Teile in ihrem Behälter nur einer geringen Varianz und ist das maximale Gewicht im Vorfeld bekannt, erleichtert das die Auswahl und Entwicklung des Greifers.

Die Software Moonflower dient der robotergestützten Maschinenbestückung. (Bild: Euclid Labs Srl)

Ausreichend hohe Effizienz?

Beim Griff in die Kiste liegen die Limitationen hauptsächlich in der Effektivität beim vollständigen Entleeren von Behältern und den Zykluszeiten. Im Allgemeinen lässt sich nicht sicherstellen, dass alle Teile gegriffen werden, ohne hohen Aufwand beim Greifer zu betreiben. Die Zykluszeiten erhöhen sich, wenn der Roboter häufig die Griffposition ändert. In vielen Anwendungen der Elektronik- und Kunststoffindustrie lassen sich die dortigen Anforderungen an das Robot-Bin-Picking kaum erfüllen, während in der Metallverarbeitung die aktuell üblichen Durchschnittszeiten von 6s je Zyklus mehr als ausreichend sind.

Seiten: 1 2Auf einer Seite lesen

Euclid Labs Srl
my.euclidlabs.it

Das könnte Sie auch Interessieren

Bild: ©Fröhlich Max (LVT)/Liebherr-Verzahntechnik GmbH
Bild: ©Fröhlich Max (LVT)/Liebherr-Verzahntechnik GmbH
Vorabsimulation per digitalem Zwilling

Vorabsimulation per digitalem Zwilling

Die virtuelle Inbetriebnahme einer Palettierzelle mit automatischer Beladung einer Wälzschälmaschine per Roboter von Liebherr-Verzahntechnik konnte die Projektdauer bei einem Getriebehersteller signifikant verkürzen. Die Vorabsimulation per digitalem Zwilling sparte bei der realen Inbetriebnahme Zeit und Kosten und sorgte für Planungssicherheit zum Produktionsstart.

Bild: TeDo Verlag GmbH
Bild: TeDo Verlag GmbH
Wenn das FTS mit dem Roboter…

Wenn das FTS mit dem Roboter…

Autonome mobile Roboter und kollaborierende Knickarmroboter sind zwei Evergreens im Robotik-Trendkarussell. Relativ neu ist allerdings die Möglichkeit beide Helferlein zu kombinieren. Der autonome mobile Roboter erweitert den Arbeitsbereich des Cobots oder auch eines größeren Roboters enorm und macht ihn mobil. Das bietet neue Möglichkeiten z.B. bei der Maschinenbe- und entladung, beim Werkstück- und Materialtransport oder in der Qualitätsinspektion.

Bild: Fronius International GmbH
Bild: Fronius International GmbH
Hohe Bauteilvielfalt

Hohe Bauteilvielfalt

Das österreichische Unternehmen Anton Paar fertigt Messgeräte für vielerlei Branchen. Da zunehmender
Fachkräftemangel und permanent steigende Stückzahlen intelligente Produktionslösungen erfordern, investierte das Unternehmen in eine Roboterschweißzelle von Fronius. Mit der Zelle ist es möglich, einen kompletten Schweißauftrag in einem Zug abzuwickeln, auch wenn eine Charge mehrere unterschiedliche Objekte umfasst.

Bild: SMW-electronics GmbH
Bild: SMW-electronics GmbH
Kontaktlose Übertragung von Energie und Signalen durch induktive Koppelsysteme von SMW-Electronics

Kontaktlose Übertragung von Energie und Signalen durch induktive Koppelsysteme von SMW-Electronics

Eine wesentliche Rolle auf dem Weg zur digitalen Fabrik spielt smarte Konnektivität. Zur kontaktlosen Übertragung von Energie und Signalen für die Anbindung von Sensoren und Aktoren hat SMW-Electronics induktive Koppelsysteme entwickelt. In den unterschiedlichen Bauformen können sie nicht nur zusätzlichen Nutzen ausspielen, sondern ermöglichen auch ganz neuartige Anwendungen. Endlos rotierende Robotergreifer sind nur ein Beispiel.