Roboterdemonstrator kombiniert Simulation und Bildverarbeitung

Roboterdemonstrator kombiniert Simulation und Bildverarbeitung

Deformiert? Kein Problem!

Die Handhabung biegeschlaffer Objekte mit Industrierobotern erfordert eine flexible Reaktionsfähigkeit auf Deformationen. Viele solcher Handling-Aufgaben werden daher heute manuell durchgeführt. Eine Alternative zeigt ein Ansatz umgesetzt als Demonstrator, der durch Kombination von Physiksimulation des biegeschlaffen Objekts und Feedback aus einer Stereokamera eine simulationsbasierte Positionierung ermöglicht.

 (Bild: Universität Stuttgart, ISW)

(Bild: Universität Stuttgart, ISW)

Problematisch bei der Handhabung biegeschlaffer Bauteile wie Kabel, Schläuche oder Dichtungen sind insbesondere die großen Verformungen, die bereits bei geringen Kräften auftreten. Die Objekte verformen sich bereits durch ihr Eigengewicht, geringe Kontaktkräfte mit der Umgebung oder aufgrund der Interaktion mit dem Roboter während der Manipulation. Im Rahmen des Graduiertenkollegs Soft Tissue Robotics wurde ein Ansatz entwickelt, der das Deformationsverhalten biegeschlaffer Objekte über ein Simulationsmodell abbildet.

Aufbau des Versuchsstands

Der für die Manipulation genutzte Versuchsstand nutzt als Aktorik den siebenachsigen Leichtbauroboter Franka Emika Panda, der über eine offene C++-API mit der Physik-Simulationsumgebung Dart gekoppelt wird. Für die Ansteuerung des Roboters über dessen API wird ein Framework zur Bewegungsplanung verwendet, welches die kartesischen Positionen, Geschwindigkeiten und Beschleunigungen analytisch ermittelt und in Diskretisierungsschritten von 1ms an den Roboter übergibt. Durch die Trennung von geometrischer Bahn und Geschwindigkeitsprofil kann das Einhalten dynamischer Beschränkungen, wie maximal möglicher Gelenkgeschwindigkeiten durch Skalierung der Trajektorie sichergestellt werden. Die Erkennung der deformierbaren Objekte erfolgt mit einer Stereokamera Nerian Scene Scan Pro. Durch die Nutzung eines FPGAs zur Verarbeitung der Stereobilder in eine 3D-Punktwolke lassen sich Bildfrequenzen bis zu 100Hz erreichen. Nach einer initialen Kalibrierung der Kamera selbst ist auch eine Auge/Hand-Kalibrierung erforderlich, um die mit der Kamera gemessenen Positionen des Kabels zum Koordinatensystem des Roboters in Beziehung zu setzten. Hierbei wird am TCP des Roboters eine Kalibriertafel mit definierten Kalibriermuster befestigt. Über eine Menge von mindestens drei Roboterposen und zugehörigen Aufnahmen des Kalibriermusters kann hieraus die relative Position und Orientierung zwischen Kamera und Kalibriertafel als Optimierungsproblem berechnet werden.

Simulationsbasierte Positionierung

Zu Beginn der Anwendung wird ein biegeschlaffes Objekt im Arbeitsraum von der Stereokamera erfasst und als Punktwolke gesampelt. Durch geeignete Filter wird das erkannte Objekt in der Punktwolke freigestellt. Basierend auf der Repräsentation als Punktwolke wird ein Mehrkörpermodell mit voreingestellter Segmentlänge dynamisch aufgebaut. Durch die Länge der Segmente lässt sich dabei die Genauigkeit einer späteren Simulation steigern, gleichzeitig steigt aber die Rechenzeit pro Simulationsschritt. Die Kinematikbeschreibung der Bilderkennung wird nachfolgend um ein Dynamikmodell in der Simulationsumgebung erweitert. Die gesamte Simulation umfasst weiterhin den Roboter und die umgebende Zelle, wodurch auch Kontakte und Kollisionen simuliert werden können. Das simulierte Mehrkörperobjekt kann nun in der Simulation per Drag&Drop mit der Maus gegriffen und positioniert werden. Die Bewegung der mit der Maus gegriffenen Objektposition wird nach dem Positioniervorgang in der Simulation in eine Trajektorie für den Roboter übersetzt, wobei vor dem Greifen der Punkt über dem Greifpunkt auf einer Sicherheitsebene angefahren wird, um die letzte Bewegung zum Objekt orthogonal zur Tischoberfläche durchzuführen. Während der Roboterbewegung werden die Gelenkwinkel und Position der Greiferfinger mit der Simulation synchronisiert. In der Simulation und am Versuchsstand lassen sich so die simulierte und die reale Verformung des weichen Objekts nachverfolgen.

ISW Institut für Steuerungstechnik der
www.isw.uni-stuttgart.de

Das könnte Sie auch Interessieren

Bild: Framence GmbH
Bild: Framence GmbH
Planen im Bestand

Planen im Bestand

Bei Modernisierungsmaßnahmen im industriellen Umfeld stellt sich bisweilen die Frage, ob der Umbau einer Produktionsstraße mit den geplanten Maßnahmen überhaupt möglich ist. In einigen Fällen können zusätzliche Schritte nötig werden – die erhebliche Kosten mit sich bringen, wenn sie in der Planungsphase nicht berücksichtigt werden. Digitale Zwillinge bieten großes Potenzial, um solche Situationen zu vermeiden.

Bild: TeDo Verlag GmbH
Bild: TeDo Verlag GmbH
Robotertage in Dresden

Robotertage in Dresden

Die diesjährigen Robotertage Dresden fanden vom 24. bis zum 25. März statt, mit dabei neben 25 Teams der First Lego League Challenge Roboterhersteller, wie ABB und Fanuc, Integratoren, wie Jugard+Künstner oder Beas Technology, außerdem Wandelbots, die United Robotics Group sowie Hochschulen und Verbände, wie die Handwerkskammer Dresden, das Ceti oder die Hochschule für Technik und Wirtschaft Dresden.

Bild: Noerr Partnerschaftsgesellschaft mbB
Bild: Noerr Partnerschaftsgesellschaft mbB
Kolumne Robotik, Recht, Risiko: Die Knowhow-Inventur

Kolumne Robotik, Recht, Risiko: Die Knowhow-Inventur

Vom Fließband bis zum Code des Fertigungsroboters, überall in Produktion und Betrieb finden sich Gegenstände, in denen sich das Knowhow des Unternehmens spiegelt. Ein Schutz dieser Gegenstände tut not. Die hierzu verfügbaren Instrumente divergieren allerdings je nach Gegenstand und allzu oft setzt ein bestimmter Schutz zudem eigenes Tätigwerden voraus. Versäumnisse hierbei offenbaren sich leider mitunter erst, wenn das Unternehmen im Ernstfall keinen angemessenen Schutz für eines seiner immateriellen Güter beanspruchen kann. Damit es dazu nicht kommt, lohnt ein Blick auf das geistige Eigentum.

Bild: Surplex GmbH
Bild: Surplex GmbH
5 Trends im Blick

5 Trends im Blick

Wachstumsrate 31 Prozent: 2021 wurden mehr Industrieroboter neu installiert als jemals zuvor. Die Gründe hierfür sind die Digitalisierung, der Fachkräftemangel und günstigere Robotereinheiten. So ist die Technik mittlerweile auch für KMUs interessant. Das belegen fünf aktuelle Trends.

Bild: VMT Vision Machine Technic Bildverarbeitungssysteme GmbH
Bild: VMT Vision Machine Technic Bildverarbeitungssysteme GmbH
3D-Roboterführung für die intelligente Behälterprüfung

3D-Roboterführung für die intelligente Behälterprüfung

Mit dem Ziel, die Uptime von Presslinien bei einem Automobilhersteller zu erhöhen, hat VMT mit FrameSense ein neuartiges 3D-Messsystem für die Prüfung von Stapelbehältern und das automatische Einstapeln von Fertigteilen per Roboter entwickelt. Mit hochauflösenden 3D-Sensoren der Sensorfamilie DeepScan sowie smarten Aggregations- und Auswertealgorithmen der Softwareplattform Multi Sensor System (MSS) werden Abweichungen in Form und Geometrie, die jeweiligen Freiheitsgrade hinsichtlich Position und Orientierung, der Zustand von Anbauteilen und Verriegelungen sowie das Vorhandensein von Störkanten und -konturen vermessen.

Bild: Kuka Deutschland GmbH
Bild: Kuka Deutschland GmbH
Alles im Blick

Alles im Blick

Die Softwareplattform Kuka iiQoT liefert wichtige Zustandsdaten für die gesamte Roboterflotte in Echtzeit. Die Software ist als Cloudlösung erhältlich und soll die Fernüberwachung von Robotersystemen effizienter machen. Das eröffnet gleichzeitig neues Potenzial für die Fehlerbehebung und Zustandsüberwachung. Allerdings gibt es immer noch Firmen, die Bedenken haben, ihre Daten hierfür zur Verfügung zu stellen.