Computergestützte Roboterprogrammierung

Computergestützte Roboterprogrammierung

Teach-in ist zunehmend out

Die Nachfrage für Baufahrzeuge und Landmaschinen steigt kontinuierlich und damit auch die Anzahl an gewünschten Varianten und Sonderbauten. Die Losgrößen selbst bleiben aber traditionell eher klein, bis hin zur Einzelanfertigung. Infolgedessen wird in dieser Branche noch viel von Hand geschweißt. Kunden verlangen jedoch schnelle, flexible und pünktliche Lieferung bei gleichbleibend hoher Qualität. Daher setzen immer mehr Baufahrzeug- und Landmaschinenhersteller verstärkt auf moderne Robotersysteme.

Roboter sorgen für einen stets perfekten Neigungswinkel, nutzen eine konstante Schweißgeschwindigkeit und passen automatisch alle variablen Parameter an. (Bild: Kawasaki Robotics GmbH)

Roboter sorgen für einen stets perfekten Neigungswinkel, nutzen eine konstante Schweißgeschwindigkeit und passen automatisch alle variablen Parameter an. (Bild: Kawasaki Robotics GmbH)

Mittlerweile gibt es für Roboter neue und interessante Bedienkonzepte, die jedoch auf Dauer nicht effizient sind. Schweißingenieure können ihr Fachwissen z.B. über das Programmieren durch Vormachen einbringen, indem sie den Roboter über eine haptische Vorrichtung oder einen Stick einfach so positionieren und einstellen, wie sie auch manuell schweißen würden. Mit der CAD-basierenden Offline-Programmierung steht ein praxistauglicher und sofort realisierbarer Ansatz zur Verfügung, das Roboter-Teachen leichter, vor allem aber schneller und effizienter zu machen. Ein erhebliches Potenzial schlummert bei der Anlagenprogrammierung in der Automatisierung wiederkehrender und zeitaufwendiger Prozeduren. Dazu gehört u.a. die Wahl der Prozessparameter, Konfigurationen und Einstellungen. Doch Konturen, Bohrungen und Verbindungselemente sind allesamt im Vorfeld durch die Konstruktion bekannt und liegen als CAD-Daten vor.

Punktschweißen 4.0

Beim Heften und Punktschweißen mit hydraulischen Punktschweißzangen sind die Anforderungen an das Teachen und an die Berechnung der Trajektorien eine Herausforderung an sich. Denn dazu müssen alle Positionen einzeln mit einer bestimmten Genauigkeit angefahren und dort angehalten werden. Jedes Mal müssen dann eine Reihe an Signalen ausgetauscht und programmiert werden, bevor die Zange den Rest übernimmt. Hier sind es die schiere Menge an Koordinaten und die oftmals sehr engen räumlichen Verhältnisse, die das an sich triviale Programmieren zu einer zeitintensiven Arbeit machen. Wenn die Arbeitspunkte in einer ASCII-Datei vorliegen, kann man sie aber über eine Schnittstelle automatisch importieren. Dann braucht man nur noch An- und Abfahrtsbewegungen zu definieren, auf Kollisionen prüfen und fertig ist das Roboterprogramm. Bei Punktschweißzangen mit einem Servoantrieb wird es etwas anspruchsvoller, da hier ein Teil der Achsbewegungen beim Schließen und Öffnen der Zange in der Regel von Robotern übernommen und daher auch entsprechend programmiert werden muss. Genau hier erweist sich der Computer dann als große Hilfe bei der Programmierung, wenn er diese Automatismen selbständig in das Roboterprogramm einfließen lässt.

Automatische Zwangslageninterpolation

Unter Box Welding lässt sich eine Reihe an praktischen Automatismen und Methoden für die automatische Zwangslageninterpolation bei der Programmierung von Schweißrobotern zusammenfassen. Die Box, also der Kasten, steht als Namensgeber für eine immer wiederkehrende Aufgabe bei der Programmierung von Schweißbahnen. Bei Kehlnähten würde der optimale Neigungswinkel des Schweißbrenners in engen Ecken zwangsläufig zu Kollisionen führen. Daher sind dort grundsätzlich manuelle Anpassungen beim Teachen erforderlich, um sukzessive von der Zwangslage in die optimale Ausrichtung zu gelangen. Die Vektoreninterpolation sorgt dabei für einen fließenden und harmonischen Übergang und für eine perfekte Bewegungsbahn von Werkzeug und Roboter. Das Ergebnis ist eine durchgängige perfekte Schweißnaht. Das ist manuell relativ aufwendig. Doch computergestützt können diese Übergänge am Anfang und am Ende einer jeden Schweißnaht einfach und vollautomatisch angepasst werden. Bei Aufspannelementen und anderen Störkonturen im Arbeitsraum gilt das genauso.

CAx-Roboterprogrammierung in drei Schritten

Roboterschweißanlagen können aufgrund methodengestützter Offlineprogrammierung in drei einfachen Schritten programmiert werden, von denen tatsächlich nur ein einziger Arbeitsschritt auf der realen Anlage erfolgt. Der Rest entsteht virtuell und computergestützt. Standardanlagen und Komponenten sind in einer Bibliothek vorhanden. Die CAD-Daten des jeweiligen Bauteils können in jedem gängigen Standardformat inklusive der Arbeitspunkte und Konstruktionselemente eingelesen werden. Dann werden die exakten Punkte, Konturen oder Oberflächen definiert – ebenso die Art, wie sie bearbeitet werden sollen. Das Werkstück wird in der Anlage virtuell positioniert und auf Erreichbarkeit hin geprüft. Mögliche Roboterkonfigurationen werden auf Effizienz, Kollisionen und Singularitäten hin untersucht, simuliert und visualisiert. Abschließend prüft man noch die voreingestellten Prozessparameter und passt sie gegebenenfalls an. Ein Mausklick und die Programme entstehen computergestützt. Prozessparameter, Konfigurationen und Kollision werden automatisch überwacht, Mehrachsbewegungen über Interpolationen angepasst. Mit dem Einlegen des Bauteils und einer kurzen Kalibrierung erfolgt dann der erste und einzige Schritt in der echten Anlage. Durch Handlingstechnik, Spannsysteme sowie Laser- und Bildvermessung lässt sich dieser Schritt sogar vollständig automatisieren.

CENIT AG Digital Factory Solutions
www.cenit.de

Das könnte Sie auch Interessieren

Bild: Pilz GmbH & Co. KG
Bild: Pilz GmbH & Co. KG
Zugang im sicheren Fokus

Zugang im sicheren Fokus

In Produktionsumgebungen geben trennende Schutzeinrichtungen dem Menschen das Signal, dass sich hinter der Schutztür ein hochsensibler Bereich befindet und daher Vorsicht geboten ist. Hier erhalten Mitarbeiter über ein HMI oder einen Schlüssel, z.B. von Pilz, Zugang zum Prozess hinter dem Schutzzaun. Aber was, wenn die Person dafür nicht qualifiziert bzw. autorisiert wäre und sich oder andere Menschen in Gefahr bringen würde?

Bild: ©Fröhlich Max (LVT)/Liebherr-Verzahntechnik GmbH
Bild: ©Fröhlich Max (LVT)/Liebherr-Verzahntechnik GmbH
Vorabsimulation per digitalem Zwilling

Vorabsimulation per digitalem Zwilling

Die virtuelle Inbetriebnahme einer Palettierzelle mit automatischer Beladung einer Wälzschälmaschine per Roboter von Liebherr-Verzahntechnik konnte die Projektdauer bei einem Getriebehersteller signifikant verkürzen. Die Vorabsimulation per digitalem Zwilling sparte bei der realen Inbetriebnahme Zeit und Kosten und sorgte für Planungssicherheit zum Produktionsstart.

Bild: TeDo Verlag GmbH
Bild: TeDo Verlag GmbH
Wenn das FTS mit dem Roboter…

Wenn das FTS mit dem Roboter…

Autonome mobile Roboter und kollaborierende Knickarmroboter sind zwei Evergreens im Robotik-Trendkarussell. Relativ neu ist allerdings die Möglichkeit beide Helferlein zu kombinieren. Der autonome mobile Roboter erweitert den Arbeitsbereich des Cobots oder auch eines größeren Roboters enorm und macht ihn mobil. Das bietet neue Möglichkeiten z.B. bei der Maschinenbe- und entladung, beim Werkstück- und Materialtransport oder in der Qualitätsinspektion.

Bild: Fronius International GmbH
Bild: Fronius International GmbH
Hohe Bauteilvielfalt

Hohe Bauteilvielfalt

Das österreichische Unternehmen Anton Paar fertigt Messgeräte für vielerlei Branchen. Da zunehmender
Fachkräftemangel und permanent steigende Stückzahlen intelligente Produktionslösungen erfordern, investierte das Unternehmen in eine Roboterschweißzelle von Fronius. Mit der Zelle ist es möglich, einen kompletten Schweißauftrag in einem Zug abzuwickeln, auch wenn eine Charge mehrere unterschiedliche Objekte umfasst.